[image: image1.png]
Mining

Part 1
Due before class on 9/14

Part 2
Due before class on 9/21

Part 3
Due before class on 9/30

Final
Due before class on 10/7
For this project, you will create a simulation of a mining operation that produces bronze, silver, and gold ore.

This project is intended to help you increase your skills in the following areas:

· Resourcefulness and Persistence

· Searching for answers online, using bookmarks for commonly used webpages

· Asking for help from Ira, the TAs, or other students when you’re stuck

· Logical Thinking

· Carefully thinking through step-by-step logic for the program

· Using Unity

· Creating new projects, files, and assets

· Attaching scripts to objects

· Using GitHub

· Storing and sharing your program as it changes over time
· Publishing a game to your own website

· How to create a basic website and the tools required

· FTP, basic text editor, Unity
· Organization

· Well-organized files and folders

· Well-named files, projects, assets, and variables

· Nicely formatted code with matching {} and indentation

· Comments to help understand the code

· Types of variables

· int, float, bool

· How to create them and modify them

· Data structure: Arrays

· What they are

· How to create them and modify them
· Mathematical expressions

· Comfortable with adding, subtracting, multiplying and dividing

· Conditional expressions

· if(), else if(), else()

· Iterative statements

· for() loops

Wow, that’s a lot! It’s amazing what you’ll be able to learn in just a few weeks of effort!

Since many of you are new programmers, it's very likely that you will be confused or get stuck along the way. Please remember that is a normal and natural part of learning! There are many resources at your disposal: the internet, your peers, your TA, and your professor. As you get more practice at programming, you will improve!

What To Hand In

For each part of this project, deliver your work as follows:

a) Within Unity, publish your game as a webpage, so you get an HTML file.
b) Modify the HTML file so it also includes a link to your GitHub repository.

c) Upload the HTML file and the .unity3d file to your Hampshire website.

d) Email Ira + TAs the link to your webpage.

We’ll cover in class how to do (a), (b), and (c), and soon it will be second nature!

Part 1
By the deadline, accomplish the following tasks:

1) Install Unity version 5.1.3 on your computer.

2) In Unity, create a new project. Keep it in an organized folder for this course.

3) Add a cube to the scene.
4) Publish the game as a website from within Unity.

5) Upload your .html and .unity3d file to your Hampshire website.

6) Email Ira and the TAs the link to your website.
If you complete this part before the deadline, go on to the next part.

Part 2
By the deadline, accomplish the following tasks:

1) Create a free GitHub account.

2) Add to your current project to GitHub, using an appropriate .gitignore
Modify your project to work as follows:

1) When the game starts, the player should see a blank scene.

2) After a few seconds, a cube should appear.

From this point forward, for the rest of the class, follow the instructions for What To Hand In. Specifically, that updated project should be pushed to GitHub, you should publish it as a webpage, and you should upload it to your Hampshire site and send us the link.

If you complete this part before the deadline, go on to the next part.

Part 3
By the deadline, create a game that functions as follows:

1) When the game starts, the player should see a blank scene.

2) Every createBronzeTime seconds, a bronze ore (i.e. a red cube) appears.
a. Note: It should be obvious to the player that more ore is appearing over time, so don't put the new bronze ore in the same place as existing ore, and ensure the new ore appears someplace the player can see it.
3) After switchToSilverTime seconds, instead of spawning bronze ore, spawn silver ore (i.e. a white cube).

4) After an additional stopSpawningTime seconds, stop spawning ore.

Use the values below for the variables mentioned, but they should be easily changeable in the Inspector:

createBronzeTime = 3

switchToSilverTime = 12

stopSpawningTime = 6

In your code or in a separate document, describe any parts of the game design
(i.e. instructions above) that were unclear, and how you decided to resolve that uncertainty yourself.

If you complete this part before the deadline, go on to the next part.

Final
By the deadline, create a game that functions the same as the previous part, with the following additions:

1) When the player clicks on an ore, it should disappear.

2) Instead of what's described previously, use the following algorithm to spawn the ore:

a. Spawn an ore every spawnTime seconds.

b. If there are <4 bronze ore, spawn a bronze.

c. If there are 4+ bronze, spawn a silver.

d. If there are exactly 2 bronze and 2 silver, spawn a gold (yellow cube) instead (but just spawn 1 gold and then go back to the normal rules.)

3) Whenever the player clicks an ore, give the player points as follows:

a. bronzePoints for a bronze

b. silverPoints for a silver

c. goldPoints for a gold

Use the values below for the variables mentioned, but they should be easily changeable in the Inspector:

spawnTime = 3

bronzePoints = 1

silverPoints = 10

goldPoints = 100

In your code or in a separate document, describe any parts of the game design
(i.e. instructions above) that were unclear, and how you decided to resolve that uncertainty yourself.

[image: image2.png]
Challenge by Choice: Do any or all of the following additional tasks. I've included categories below, but you can pick and choose however you want.
Feedback to the Player

· Whenever players mouse-over an ore (but before clicking on it), give a visual indication that the ore is clickable (change the color a bit, enlarge it slightly, etc. Your choice of what to do, but do something.)

· Somewhere on the screen, display a count-up timer that shows how long the game has been going.
· If showing the game timer, make it fancy: After 59 seconds, show 1:00 instead of 60. After 60 minutes, show 1:00:00 instead of 60:00.
· Somewhere on screen, display the player's current score.

· Along with the player's current score, show the word "Score."
· At the moment the player earns points, display the points earned somewhere (+10!). 
Sound Effects
· Whenever the player clicks an ore, play a sound effect (SFX).

· Whenever the player clicks an ore, play a different SFX depending on which type of ore it is.

· Play music that loops, so there's constantly music playing during the game.

Camera Control

· If there are too many ore to fit on screen, automatically zoom out the camera.

· If doing the automatic zoom out, also do an automatic zoom in once there are few enough ore on screen.

Game Logic
· Add kryptonite ore (green) which only appears under these circumstances:

· There can never be more than 2 kryptonite at once; only 0, 1 or 2. 

· If there are the same number of silver and gold ore, spawn a kryptonite.

· When determining if there is the same number of silver and gold, kryptonite can be used a wildcard.

· For example, if there were 2 silver, 1 gold, and 1 kryptonite, you would spawn a kryptonite (because the existing kryptonite could count as a gold, and then you have 2 silver and 2 gold, which meets the conditions of spawning a kryptonite.) 

· Kryptonite should be worth kryptonitePoints, initially set to 1000.

Player Input

· Instead of automatically controlling the camera, let the player control the camera instead. Either zoom in and zoom out or pan left and right.
· Allow the player to modify spawnTime while the game is going, perhaps by pressing the up and down keys, or whatever mechanism you choose.

Visual Polish

· Once an ore is spawned, have it move or rotate slightly.

· Make the ore look prettier, instead of just being a simple colored cube. You can change the shape, texture, etc. The goal is to make it pretty. Feel free to add a background to the game, too.

Original assignment designed by Professor Ira Fay. Inspiration from Stone Librande, with help from Sam Goodspeed.
